Rapid annotation of GTEx genomic variants with the TOPMed Annotation Pipeline
Goal:
Rapidly and reliably aggregate variant annotations for large volumes of whole genome sequence data, with results that are findable, accessible, interoperable, and reusable: FAIR.

Method:
Leverage cloud computing and Commons tools to run the Whole Genome Sequence Annotator (WGSA) on many GTEx genomes, with identifiers, and reproducible pipelines used pervasively to ensure FAIRness.
Rationale: We can boost the statistical power of association studies by aggregating variants

Problem: Large quantities of genome data are now available. But genome-wide association studies that depend on rare variants lack statistical power.

Solution: Aggregate rare variants to boost power.

Approach: Combine annotations from many sources to provide a comprehensive “genome map.”

This is a **big data** and **big compute** problem.

[Source: Ken Rice: http://bit.ly/2ycOt8t]
70 databases are used for annotating variants: e.g., NCBI, Ensemble, UCSC, ENCODE, Roadmap, dbSNP

TOPMed’s Annotation pipeline uses WGSA to identify and assignment annotations

We address 3 big challenges to enable reliable use on big data:
- Scaling to big cloud data and compute
- Reliable, secure, and inexpensive execution
- FAIR execution and results: Findable, Accessible, Interoperable, Reusable

WGSA: https://sites.google.com/site/jpopgen/wgsa
We create a high performance, parallel implementation of TOPMed’s Annotation pipeline that uses WGSA to annotate variant (VCF) files from GTEx.

We use this pipeline to create annotated variant files that can then be used in genome-wide association studies.

We leverage Commons tools to perform these tasks efficiently, reliably, cost-effectively, and FAIRly.
Cross-stack compute demo generated 650 GTEx VCFs (variants).

1. Calcium
2. Xenon
3. Helium
4. Argon

TOPMed Alignment & Variant Calling Workflows

Globus Genomics uses cost-aware scheduling to manage 500,000 core-hours.

Millions of annotations in 1,300 Annotated GTEx VCFs are aggregated in BDBags.

BDBags are assigned GUIDs by Globus Identifiers.

GUIDs are cataloged for discovery and re-use.

GTEx data

70 Annotation Databases

Argon ingests GTEx VCFs.

Argon ingests GTEx VCFs.
Results*

- 3 billion variants from 605 GTEx genomes processed against 70 databases
- 42,000 compute jobs using 500,000 core-hours on Amazon cloud
- Millions of annotations generated and made available to community in BDBags named by Minid GUIDs

Total cost of computation performed $32k vs. $78k if our cost-aware scheduling had not been employed

* Expected: Computations are completing
We leverage Commons technologies

Lightweight digital identifiers used to identify data products through the lifecycle

Scalable data bundles, based on Library of Congress standards, used for data exchange

DATS-based KC7 Crosscut Metadata Model and GTEx databases for data ingest

Interactive exploration and cohort formation across Commons data

Cost-optimized, reliable, cloud computation with parallel pipelines for scale

Infrastructure for auth, data management, discovery across clouds and resources
BDBags & Minds

Minids provide a simple and well-defined identification mechanism that allows a scientist to create a reference to a BDBag (or any other type of data) on the web as a single, easily shared URL. Minid URLs dereference to a “landing page” that provides basic metadata about the published entity, such as the author, publication date, title/description, location of the data, and a checksum of the data that can be used to verify the data integrity. Minids are implemented by the Globus Identifier service.

BDBags provide a file container mechanism that ensures dataset integrity, completeness, and provenance. BDBags also provide a mechanism for ensuring that privacy restrictions and data use agreements can be honored. A BDBag provides a blueprint of what a complete data set should look like. Scientists can share BDBag instances that contain only references to restricted data, with confidence that only those parties with proper access to the restricted data can fully reconstitute the bag. BDBags can be named by Minids and can reference other data via Minids.
Minimal Viable Identifiers (Minids)

Lightweight identifiers that support simple creation/use

- Unique identifier (ARK)
 - E.g., ark:/57799/b9040f
 - Or compact identifier (minid:b9040f)
- Standard minting/resolution services
- KC2 core metadata (creator, date, name)
- Checksum ensures data is verifiable
- BDBags for multi-file datasets

Easy to use: CLI, Python SDK, R SDK, JSON-LD REST API
Big Data Bags (BDBags)

Standards-based, portable file container that stores hashed manifests of both local and remote content

- Data consistency guarantees via checksum algorithms
 - MD5, SHA1, SHA256, SHA512
- Multiple file transfer protocol support
 - HTTP, FTP, S3/GCS, Globus Transfer
- Multiple identifier resolution support
 - Ark/Minid, DOI, DataGUID
- Secure access to protected data
- Integrated provenance metadata (RO)

Easy to use: CLI, Python API, GUI
Navigation and discovery of all data from source through secondary and tertiary derived data.

- Integrated management of all data
 - CCMM instances, derived data, user defined collections
- Powerful data discovery and organization with rich models
- Rapid definition and BDBag export of virtual cohorts
- Rich policy with fine-grained access control
- Dynamically adapts to changing data collections

Easy to use: Browser GUI, CLI, Python SDK, Javascript SDK, REST API
We leverage **cloud computation methods** developed by the Globus Genomics team. These enable analysis pipelines to be scheduled **securely** and **reliably** onto many cloud computers (**high performance**), selected to minimize cost (**cost optimization**). Inputs and outputs are packaged in BDBags and referenced by Minids, providing **FAIRness**.
Globus

- 37,000+ active users
- 400+ identity providers
- 12,000+ active endpoints
- 1,000+ registered services & apps
- 1,000+ connected institutions
- 3,000+ active shared endpoints
- Reliably transferring 500TB per day
- Modular apps
- Developer APIs
- Data publication
- File transfer
- Access control
- File sharing
- Local storage
- Institutional storage
- Tape archives
- High performance computing
- Commercial cloud storage
Commons advantages demonstrated

- Reuse of workflows, robust sharing of results, and reproducibility of every element (KC1)
- Naming of data via GUIDs (KC2)
- High-performance parallel computation and cost-aware cloud provisioning (KC4)
- Secure data access and analysis (KC6)
- All via well-defined APIs (KC3)
Individual results are assigned a GUID (Minid)

https://identifiers.globus.org/ark:/57799/b95E1DXjoyity0

GUIDs will be indexed in DERIVA

https://nih-commons.derivacloud.org

Complete set is being added to the Full Stacks repo for reference by other DCPPC Teams.

https://github.com/dcpc/ful-stacks/pull/41